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ABSTRACT
We are analyzing a power-full method using kernel PCA (principal component analysis)for distorted speech recognition.
Research for robust speech feature extraction has been done, but it is difficult to completely remove convolution noise. The
noise removal techniques are based on the spectral analysis field, and then for speech recognition, the MFCC (Mel
frequency cepstral coefficient) is computed, where DCT (Discrete Cousine Transform) is applied to the Mel-scale filter
bank output. This paper describes a new PCA-based speech enhancement algorithm using kernel PCA instead of DCT,
where the main speech element is projected onto low-order features, while the noise or the distortion element is projected
onto high-order features. The effectiveness of this method is confirmed by word recognition experiments on distorted
speech.

KEYWORDS: PCA (Principal Component Analysis), DCT (Discrete Cousine Transform), MFCC (Mel frequency cepstral
coefficient), Kernel.

INTRODUCTION
Current speech recognition systems are capable of
achieving impressive performance in clean acoustic
environments. However if the speaker speaks at a distance
from the microphone, the recognition accuracy is seriously
degraded by the influence of additive and convolution
noise. The noise is usually caused by telephone channels,
reverberation ect. Its effect on the input speech appears as
a convolution in the wave domain and is represented as a
multiplication in the linear-spectral domain. Conventional
normalization techniques, such as CMS (Cepstral Mean
Subtraction) and Rasta, have been proposed, and their
effectiveness has been confirmed for the telephone
channel or microphone characteristics, which have a short
impulse response. When the length of the impulse
response is shorter than the analysis window used for the
spectral analysis of speech, those methods are effective.
However, as the length of the impulse response of the
room reverberation (acoustic transfer function) becomes
longer than the analysis window, the performance
degrades. To solve problems caused by additive and
convolution noise, many methods have been presented in
robust speech recognition, but it is difficult to completely
remove non-stationary or unknow noise.  In current speech
recognition technology, the MFFC(Mel Frequency
cepstral coefficient) has been widely used. The feature is
derived from the mel-scale filter bank output using DCT.
The low-order   MFFCs account for the slowly changing
spectral envelope, while the high-order ones describe the
fast variations of the spectrum.
Ref.[9] has investigated a suitable transformation based on
PCA that can reflect the statistics of speech data better
than DCT to compute the MFCCs. In [10], a PCA-based
approach for speech enhancement is proposed, where PCA
is applied to the wave domain instead of the Fourier
Transform. In [11], the filter bank coefficients are

estimated by applying PCA to the FFT spectrum. In [12],
the effect of a PCA was applied only to the low-order
MFCCs that account for the spectral envelope.
In this paper, we investigate robust feature extraction
using kernel PCA instead of DCT provides better
performance for reverberant speech.

Figure 1. Feature extraction using kernel PCA.PCA filter
represents the statistics of clean speech data.

FEATURE EXTRACTION USING KERNEL PCA
A. Speech Enhancement
The distorted speech, Xn(ω), is generally considered as the
multiplication of the clean speech and the convolution
noise:
Xn(ω)=Sn(ω) * Hn(ω) (1)
Where Sn(ω) and Hn(ω) are the short term linear spectrum
for the clean speech and the convolution noise (acoustic
transfer function) of the frequency ω at the n-th frame,
respectively.
The length of the acoustic transfer function is generally
longer than that of the window. Therefore, the observed
distorted spectrum is approximately represented by
Xn(ω)≈Sn(ω) * Hn(ω) (2)
The multiplication can be converted to addition in the log-
spectral domain as follows:
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Xlog_n(ω)≈Slog_n(ω)+Hlog_n(ω) (3)
Where Xlog_n(ω), Hlog_n(ω), and  Slog_n(ω) are the log
spectra for the observed signal, acoustic transfer function
(convolution noise), and speech signal, respectively.
Next, we consider the following filtering based on PCA in
order to extract the feature of clean speech only,

=V Xlog (4)

The filter (eigenvector matrix), V, is derived by the
eigenvalue decomposition of the centered covariance
matrix of a clean speech data set, in which the filter
consists of the eigenvectors corresponding to the L
domaminant eigenvectors corresponding to the L
dominant eigenvalues (L eigenvectors corresponding to
the biggest L eigenvalues).

V=[v(1) , v(2) ,……, v(L)] (5)

Due to the orthogonality, the component of the
convolution noise belonging to the subspace
[v(L+1),…..,v(M)] is canceled by this filtering operation.
However, as shown in (3), the observed signal is
approximately represented under the assumption of non-
correlation between the clan speech and the convolution
noise. In this paper, we focus on non-linear PCA (kernel
PCA) in order to deal with the influence of the
approximation. Kernel PCA first maps the function and
then performs linear PCA on the mapped data. We can
expect that noise will be canceled in the high-dimensional
space.

B. Kernel PCA
PCA is a powerful technique for extracting structure from
possibly high-dimensional data sets. But it is not effective
for data with non-linear structure. In kernel PCA, the input
data with nonlinear structure is transformed into a higher-
dimensional feature space with linear structure, and then
linear PCA is performed in the high-dimensional spece
[15].
Given the mel-scale filter bank output (log spectrum) xj at
j-frame, the covariance matrix is defined as= ∑ Φ(x ) (6)

Φ = Φ − ∑ Φ( ) (7)

Where the total number of frames is N, and  is a
nonlinear map.
Φ: → ∞ (8)
Note that the data in the high-dimensional space could
have an arbitrarily large, possibly infinite, dimensionality,
and d is the dimension of x.
We now have to find eigenvalues  and eigenvectors v
satisfying
 v=cv, (9)
 ( (xk) v)=(  (xk) cv), k=1….,N (10)
Also there exist coefficients αi such that= ∑ Φ( ) (11)
Substituting (6) and (11) in (10), we get for the left side of
the equations

Φ( ) = ∑ Φ ( )Φ( ) = ∑ (12)
Where= Φ( )Φ( ) (13)

Also for the right side of the equation

Φ( ) = Φ( ) ∑ Φ Φ =
Φ( ) ∑ ∑ Φ( )Φ( ) Φ( )= ∑ Φ( ) ∑ Φ Φ Φ( )= ∑ ∑ Φ( )Φ( ) Φ( )Φ( )= ∑ ∑ (14)

Thus we get== (15)
Consequently, we only need to diagonalize which is
computed as follows.= Φ( )Φ( )= (Φ( ) − ∑ Φ( )(Φ − ∑ Φ( ))= Φ( )Φ − ∑ Φ ( )Φ −∑ Φ ( )Φ( ) + ∑ Φ( )Φ( ),= − ∑ 1 − ∑ 1 (16)= Φ( )Φ( ) (17)1 = 1 , (18)
Using N x N matrix (1N)ij:=1/N, we get the more compact
expression= − 1 − 1 + 1 1 (19)
We thus can compute from K, and then solve the
eigenvalue problem (15).
Let λ1≤ λ2≤…..≤λN denote the eigenvalues, and
α(1),…,α(N) the corresponding complete set of eigenvectors,
with λp being the first nonzero eigenvalue. We normalize

Figure 2. Procedure of feature extraction

α(p),….,α(N) by requiring that the corresponding vectors are
normalized:
v(l) v(l)=1, for all l=p,…..,N (20)
from (11) and (15) we get1 = ∑ ( ), ( ) Φ( )Φ = ∑ ( ) ( ), =( ) ( ) = ( ( ) ( )) (21)
Next, for feature extraction, we project test data y onto
eigenvectors v(l) in the high-dimensional space.
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( )Φ( ) = ∑ ( )(Φ( )Φ( )) =∑ ( ) ( , ) (23)
Similar to (16) we can compute from .=(Φ( ) − ∑ Φ( ))(Φ − ∑ Φ ( )) (24)= − 1′ − 1 + 1′ 1 (25)

Here 1′ is the L x N matrix with all entries equal to 1/N,
and the total number of frames for the test data is L. the
procedure of the feature extraction is summarized in Fig.2.

Figure 3.  Recognition rates for the reverberant speech (reverbation time:
470 msec) by the proposed method (p=1 in polynomial function)

RECOGNITION EXPERIMENT
The new feature extraction method was evaluated on
reverberant speech recognition task. Reverberant speech
was simulated using a linear convolution of clean speech
and impulse response. The impulse response was taken
from the RWCP sound scene database [16]. The
reverberation time was 470 msec. the distance to the
microphone was about 2 meters, and the size of recording
room was about 6.7 m x 4.2m (width x depth). In order to
compute the matrix, K, it would be necessary to use all the
training data, but it is not realistic in terms of the cost of
the computation. Therefore, in this experiment, N=2,500
frames were ramdomly picked from the training data, and
we used the polynomial kernel function.( , ) = ( + 1) (26)
The speech signal was sampled at 12 kHz and windowd
with a 32-msec Hamming window every 8 msec. the
models of 54 context-independent phonemes were trained
by using 2,600 words in the ATR Albanian speech
database for the speakers-dependent HMM. Each HHM
has three states and three self-loops, and each state has
four Gaussian mixture components. The tests were carried
out on 1,000 words. The baseline recognition rate was
63.9%, were 16-oreder MFCCs and their delta coefficients
were used as feature vectors.
Experimental results
Figure 3 shows the recognition rates using kernel PCA
(p=1 in polynomial functions). As can be seen from figure
3, the use of kernel PCA instead of DCT improves the
recognition rates from 63.9% to 75.0%. here, in the new
feature extraction, kernel PCA was applied to 32-
dimension mel-scale filter bank output, and then the delta
coefficients were also computed. Figure 4 shows the

recognition rates using kernel PCA (p=2 in polynomial
function). These results clearly show that the performance
is better when using kernel PCA instead of DCT.

Figure 4. Rrecognition rates for the reverberant speech (reverberation
time: 470 msec) by the proposed method (p=2 in polynomial function)

Figure 5. Recognition rates for test speaker3 when kernel PCA is applied
using different amounts of training data.

The kernel PCA for the polynomial function for p=1 is
almost same as the linear PCA. The recognition rate using
the linear PCA described in the Section 2-A is actually
75% on average. Compared to Figure 3, the recognition
rate is equal to that of the kernel PCA (p=1). Next, we
applied kernel PCA to 16-order MFCCs [13] [14]. The
recognition rate improved from 63.9% to 67.8%. as can be
seen from figure 4, a further improvement was obtained by
the new method, where kernel PCA was applied to mel-
scale filter bank output. This is because we can expect that
kernel PCA in the spectral domain will project the main
speech element onto low-order features, while the
reverberant elements will be projected onto high-order
features.
Figure 5 shows the performance of test speaker3 when the
kernel PCA is applied using different amounts of training
data in (6). In this case, increasing the amount of training
data does not significantly improve the performance of the
kernel PCA. This result shows that the use of 2,500 frames
training data is suitable for this experiment.
Figure 6 shows the recognition rates for clean speech by
the proposed method. The recognition rate with the new
feature extraction was 97.3%. in clean environments, the
experiment results indicate that the new method achieves
almost the same performance as that of DCT.
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Figure 6. Recognition rates for the clean speech by the proposed
method. (p=2 in polynomial function)

Next, Table 1 shows the performance using the sigmoid
kernel as shown in (27) instead of the polynomial kernel,( , ) = tanh( − ),   (27)
Where = 0.01, and the recognition rates for test
speaker3 are shown. The results in table 1 show a decrease
in recognition rate, compared to the polynomial kernel.
Also, it is difficult to find two appropriate parameters, a
and , in the sigmoid kernel.
Finally, we examined the performance for the kernel
principal component based on the speaker-independent
(SI) data instead of the speaker-dependent (SD) data. In
this case, 2,500 frames from 25 males were used for
calculation of in (15), and the acoustic model was
trained using the SD data in order to examine only the
accuracy of PCA filter estimated by SI data. (*) shows the
recognition rates for the speaker-dependent data. The
recognition rate results in a 1.5% decrease on average
because of increasing the speaker variability.

Tabele1 Recognition rates [%] with the sigmoid function

16 dim. 24 dim. 32 dim.
a=0.0001 58.8 60.7 61.7
a=0.00005 71.6 69.7 68.3
a=0.00001 73.0 71.3 72.6
a=0.000005 71.6 72.7 73.4

Table 2 Recognition rates [%] when the kernel principal
component is estimated by speaker-independent data

16 dim. 24 dim. 32 dim.
p=1 70.7 (71.0) 72.9 (74.0) 72.2 (70.1)
p=2 72.0 (73.7) 73.7 (74.8) 74.4 (78.5)
p=3 72.0 (75.6) 73.3 (74.1) 73.3 (76.1)

SUMMARY
This paper has described a PCA-based speech
enhancement technique for distorted speech recognition,
where kernel PCA is applied to the mel-scale filter bank
output. It can be expected that kernel PCA will project the
main speech element onto low-order features, while the
reverberant (noise) element will be projected onto high-
order features, and the PCA-based filter will extract the
feature of clean speech only. From our recognition results,

it is shown that the use of kernel PCA instead of DCT
provides better performance for  reverberant speech.
(reverberation time:470 msec).
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